Synergetic use of Sentinel-1 and Sentinel-2 data for wheat-crop height monitoring using machine learning

dc.contributor.authorNduku, Lwandile
dc.contributor.authorMunghemezulu, Cilence
dc.contributor.authorMashaba-Munghemezulu, Zinhle
dc.contributor.authorRatshiedana, Phathutshedzo Eugene
dc.contributor.authorSibanda, Sipho
dc.contributor.authorChirima, Johannes George
dc.date.accessioned2024-08-01T09:08:22Z
dc.date.available2024-08-01T09:08:22Z
dc.date.issued2024-06
dc.descriptionThis article belongs to the Special Issue titled 'Application of Remote Sensing and GIS in Agricultural Engineering'.en_US
dc.descriptionDATA AVAILABILITY STATEMENT : Data used in this study will be made available upon request.en_US
dc.description.abstractPlease read abstract in article.en_US
dc.description.departmentGeography, Geoinformatics and Meteorologyen_US
dc.description.sdgSDG-02:Zero Hungeren_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.sdgSDG-15:Life on landen_US
dc.description.sponsorshipThe Council for Scientific and Industrial Research (CSIR), the Department of Science and Innovation (DSI), the Agricultural Research Council-Natural Resources and Engineering (ARC-NRE), and National Research Foundation (NRF).en_US
dc.description.urihttp://www.mdpi.com/journal/agriengineeringen_US
dc.identifier.citationNduku, L.; Munghemezulu, C.; Mashaba-Munghemezulu, Z.; Ratshiedana, P.E.; Sibanda, S.; Chirima, J.G. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Wheat-Crop Height Monitoring Using Machine Learning. AgriEngineering 2024, 6, 1093–1116. https://doi.org/10.3390/agriengineering6020063.en_US
dc.identifier.issn2624-7402 (online)
dc.identifier.other10.3390/agriengineering6020063
dc.identifier.urihttp://hdl.handle.net/2263/97389
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).en_US
dc.subjectCrop heighten_US
dc.subjectSentinel-1en_US
dc.subjectSentinel-2en_US
dc.subjectRandom forest regressionen_US
dc.subjectSupport vector machine regressionen_US
dc.subjectWheaten_US
dc.subjectSynthetic aperture radar (SAR)en_US
dc.subjectOptimized random forest regression (RFR)en_US
dc.subjectSupport vector machine regression (SVMR)en_US
dc.subjectDecision tree regression (DTR)en_US
dc.subjectNeural network regression (NNR)en_US
dc.subjectMachine-learning algorithmsen_US
dc.subjectSDG-02: Zero hungeren_US
dc.subjectSDG-09: Industry, innovation and infrastructureen_US
dc.subjectSDG-15: Life on landen_US
dc.titleSynergetic use of Sentinel-1 and Sentinel-2 data for wheat-crop height monitoring using machine learningen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nduku_Synergetic_2024.pdf
Size:
5.81 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: