Synergetic use of Sentinel-1 and Sentinel-2 data for wheat-crop height monitoring using machine learning

Loading...
Thumbnail Image

Authors

Nduku, Lwandile
Munghemezulu, Cilence
Mashaba-Munghemezulu, Zinhle
Ratshiedana, Phathutshedzo Eugene
Sibanda, Sipho
Chirima, Johannes George

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

Please read abstract in article.

Description

This article belongs to the Special Issue titled 'Application of Remote Sensing and GIS in Agricultural Engineering'.
DATA AVAILABILITY STATEMENT : Data used in this study will be made available upon request.

Keywords

Crop height, Sentinel-1, Sentinel-2, Random forest regression, Support vector machine regression, Wheat, Synthetic aperture radar (SAR), Optimized random forest regression (RFR), Support vector machine regression (SVMR), Decision tree regression (DTR), Neural network regression (NNR), Machine-learning algorithms, SDG-02: Zero hunger, SDG-09: Industry, innovation and infrastructure, SDG-15: Life on land

Sustainable Development Goals

SDG-02:Zero Hunger
SDG-09: Industry, innovation and infrastructure
SDG-15:Life on land

Citation

Nduku, L.; Munghemezulu, C.; Mashaba-Munghemezulu, Z.; Ratshiedana, P.E.; Sibanda, S.; Chirima, J.G. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Wheat-Crop Height Monitoring Using Machine Learning. AgriEngineering 2024, 6, 1093–1116. https://doi.org/10.3390/agriengineering6020063.