Artificial intelligence (AI) in point-of-care testing

dc.contributor.authorPillay, Tahir S.
dc.contributor.authorKhan, Adil I.
dc.contributor.authorYenice, Sedef
dc.date.accessioned2025-11-21T05:48:43Z
dc.date.available2025-11-21T05:48:43Z
dc.date.issued2025-06
dc.descriptionDATA AVAILABILITY : No data was used for the research described in the article.
dc.description.abstractThe integration of artificial intelligence (AI) into point-of-care testing (POCT) represents a transformative leap in modern healthcare, addressing critical challenges in diagnostic accuracy, workflow efficiency, and equitable access. While POCT has revolutionized decentralized care through rapid results, its potential is hindered by variability in accuracy, integration hurdles, and resource constraints. AI technologies—encompassing machine learning, deep learning, and natural language processing—offer robust solutions: convolutional neural networks improve malaria detection in sub-Saharan Africa to 95 % sensitivity, while predictive analytics reduce device downtime by 20 % in resource-limited settings. AI-driven decision support systems curtail antibiotic misuse by 40 % through real-time data synthesis, and portable AI devices enable anaemia screening in rural India with 94 % accuracy, slashing diagnostic delays from weeks to hours. Despite these advancements, challenges persist, including data privacy risks, algorithmic opacity, and infrastructural gaps in low- and middle-income countries. Explainable AI frameworks and blockchain encryption are critical to building clinician trust and ensuring regulatory compliance. Future directions emphasize the convergence of AI with Internet of Things (IoT) and blockchain for predictive diagnostics, as demonstrated by AI-IoT systems forecasting dengue outbreaks 14 days in advance. Personalized medicine, powered by genomic and wearable data integration, further underscores AI potential to tailor therapies, reducing cardiovascular events by 25 %. Realizing this vision demands interdisciplinary collaboration, ethical governance, and equitable implementation to bridge global health disparities. By harmonizing innovation with accessibility, AI-enhanced POCT emerges as a cornerstone of proactive, patient-centered healthcare, poised to democratize diagnostics and drive sustainable health equity worldwide.
dc.description.departmentChemical Pathology
dc.description.librarianam2025
dc.description.sdgSDG-03: Good health and well-being
dc.description.sdgSDG-09: Industry, innovation and infrastructure
dc.description.urihttps://www.sciencedirect.com/journal/clinica-chimica-acta
dc.identifier.citationPillay, T.S., Khan, A.I. & Yenice, S. 2025, 'Artificial intelligence (AI) in point-of-care testing', Clinica Chimica Acta, vol. 574, art. 120341, 1-12. https://doi.org/10.1016/j.cca.2025.120341.
dc.identifier.issn0009-8981 (print)
dc.identifier.issn1873-3492(online)
dc.identifier.other10.1016/j.cca.2025.120341
dc.identifier.urihttp://hdl.handle.net/2263/105416
dc.language.isoen
dc.publisherElsevier
dc.rights© 2025 The Author(s). This is an open access article under the CC BY license.
dc.subjectPoint-of-care testing (POCT)
dc.subjectArtificial intelligence (AI)
dc.subjectElectronic health records
dc.subjectPersonalized medicine
dc.subjectDiagnostic accuracy
dc.subjectMachine learning
dc.titleArtificial intelligence (AI) in point-of-care testing
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pillay_Artificial_2025.pdf
Size:
2.11 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: