Title page for ETD etd-12152008-154740

Document Type Master's Dissertation
Author Tivane, Catarina
Email catarinativane@yahoo.com.bc
URN etd-12152008-154740
Document Title The morpohology of the oral cavity, pharynx and oesophagus of the ostrich (Struthio Camelus)
Degree MSc
Department Anatomy and Physiology
Advisor Name Title
Prof H B Groenewald Co-Supervisor
Prof J T Soley Supervisor
  • ostrich
  • Struthio Camelus
  • morphological data
Date 2008-11-28
Availability unrestricted
Most descriptions of the ostrich oropharynx and oesophagus are superficial and supply little meaningful morphological data. It was therefore the aim of this study to address this deficiency by means of a macroscopic and histological study of this region. The results were supplemented by data obtained by scanning electron microscopy.

Macroscopic observations confirmed that in the ostrich the oral and pharyngeal cavities formed a single structure and could not be separated using visual criteria. The most obvious components observed in the roof of the oropharynx were the palate, the choana, the infundibular cleft and the pharyngeal folds, and on the floor, the interramal region, the tongue and the laryngeal mound. The prominent median longitudinal fold running along the palate and the numerous folds in the interrammal region of the floor contained a concentration of Herbst (Pacinian) corpuscles.

The ramphotheca forming the rim of the oral cavity carried a sharp tomium along the rostral aspect of the mouth. which would assist the ostrich in tearing off plant material. It was further observed that both the roof and floor of the oropharynx could be macroscopically divided into two regions based on colour differences in the mucosa. The pale rostral regions were lined by a keratinized stratified squamous epithelium whereas the darker, more caudally positioned regions demonstrated a thicker non-keratinised epithelium and, in the case of the roof, a glandular layer.

None of the regions of the upper digestive tract sampled revealed structures resembling taste buds and it would appear as if taste plays no role in the selection of food in the ostrich. The presence of large numbers of Herbst corpuscles in the palate may indicate the importance of texture in the selection of food in this species.

In addition to confirming the folded nature of the ostrich tongue, this study revealed that the deep pouch formed by the dorsal tongue fold is further subdivided by a smaller secondary fold into dorsal and ventral recesses. The function of this structural adaptation is unclear but the large increase in surface area produced by the folds, and by virtue of the numerous mucous producing glands found in the mucosa, would presumably enhance mucous production and secretion required for ingesting often dry and difficult to swallow plant material. In addition to the tongue, the entire caudal aspect of the oropharynx was well-equipped with glandular tissue. Other adaptations for swallowing food included the presence of a highly folded mucosa in the interramal region which would indicate that the floor of the oral cavity in the ostrich is capable of a certain degree of distension to accommodate the accumulation of food in the oral cavity prior to swallowing. In similar fashion the longitudinal mucosal folds present throughout the oesophagus, as in other avian species, would also allow for distension of this organ when swallowing bulky food items.

The pharyngeal folds that lie caudal to and around the opening of the Eustachian tubes in ratites are often referred to as the “tonsils” although no histological information has been presented to support this observation. This study revealed that the pharyngeal folds are filled with masses of diffuse and nodular lymphatic tissue and that epithelial folds emanating from the infundibular cleft and retropharyngeal recess formed tonsillar crypts surrounded by the lymphatic tissue.

It has been well documented that in most species of birds papillae are found throughout the oropharynx. Papillae have also been described in ratites, mainly on the tongue and at the caudal aspect of the larynx. Whether the projections observed on the laryngeal mound of the ostrich in this study can be viewed as pharyngeal papillae remains debatable. Likewise, the lingual papillae seen in the ostrich were poorly developed and rudimentary. Compared to other birds, therefore, it is clear that the oropharynx of the ostrich is poorly equipped with papillae.

This study confirmed that the hyobranchial apparatus consists of both central and paired caudo-lateral components, the former represented by the paraglossum and fused basihyale and urohyale, and the latter by the ceratobranchiale and the epibranchiale. The most important finding was that the paraglossum of the ostrich consisted of paired caudo-laterally directed cartilages that were connected rostrally to each other by fibrous connective tissue, and which supported the ventro-lateral aspect of the tongue. This information on the paraglossum has not previously been reported. The horns of the hyobranchial apparatus did not pass close to the skull as previously reported but in fact curved downwards away from the skull. The larynx consisted of the cricoid, procricoid and two arytenoid cartilages as is found in birds in general.

It can be concluded that the present study, in addition to confirming the basic features of the oropharynx previously described for the ostrich, clarified the contradictory information presented in the literature and also provided new, unreported morphological data, some of which may be important when studying nutrition in these birds.

© 2008 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.

Please cite as follows:

Tivane, C 2008, The morphology of the oral cavity, pharynx and oesophagus of the ostrich (Struthio Camelus), MSc dissertation, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-12152008-154740/ >


  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  dissertation.pdf 7.78 Mb 00:36:01 00:18:31 00:16:12 00:08:06 00:00:41

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact UPeTD.