Title page for ETD etd-12082006-135946


Document Type Doctoral Thesis
Author Labuschagne, Anneke
Email anneke.labuschagne@up.ac.za
URN etd-12082006-135946
Document Title Finite element analysis of plate and beam models
Degree PhD (Mathematics and Applied Mathematics)
Department Mathematics and Applied Mathematics
Supervisor
Advisor Name Title
Dr A J van der Merwe
Prof N F J Van Rensburg
Keywords
  • numerical solutions
  • differential equations
  • numerical analysis
  • finite element method
  • Mathematical models
Date 2006-09-07
Availability unrestricted
Abstract
We consider linear mathematical models for elastic plates and beams. To be specific, we consider the Euler-Bernoulli, Rayleigh and Timoshenko theories for beams and the Kirchhoff and Reissner-Mindlin theories for plates.

The theories mentioned above refer to the partial differential equations that model a beam or plate. The contact with other objects also need to be modelled. The equations that result are referred to as “interface conditions".

We consider three problems concerning interface conditions for plates and beams: A vertical slender structure on a resilient seating, the built in end of a beam and a plate-beam system.

The vertical structure may be modelled as a vertically mounted beam. How- ever, the dynamics of the seating must be included in the model and this increases the complexity of a finite element analysis considerably. We show that the interface conditions and additional equations can be accommodated in the variational form and that the finite element method yields excellent results.

Although the Timoshenko model is considered to be better than the Euler- Bernoulli model, some authors do not agree that it is an improvement for the case of a cantilever beam. In a modal analysis of a two-dimensional beam model, we show that the Timoshenko model is not only better, but it provides good results when the beam is so short that one is reluctant to use beam theory at all.

In applications, structures consisting of linked systems of beams and plates are encountered. We consider a rectangular plate connected to two beams. Combining the Reissner-Mindlin plate model and the Timoshenko beam model can be seen as a first step towards a better model while still avoiding the complexity of a fully three-dimensional model. However, the modelling of the plate-beam system is more complex than in the case of the classical theory and the mathematical analysis and numerical analysis present additional difficulties.

A weak variational form is derived for all the model problems. This is necessary to apply general existence and uniqueness results. It is also necessary to apply general convergence results and derive error bounds. The setting for the weak variational forms are product spaces. This is due to the complex nature of the model problems.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  00front.pdf 148.73 Kb 00:00:41 00:00:21 00:00:18 00:00:09 < 00:00:01
  01chapters1-2.pdf 340.17 Kb 00:01:34 00:00:48 00:00:42 00:00:21 00:00:01
  02chapter3.pdf 343.71 Kb 00:01:35 00:00:49 00:00:42 00:00:21 00:00:01
  03chapters4-5.pdf 289.26 Kb 00:01:20 00:00:41 00:00:36 00:00:18 00:00:01
  04chapters6-7.pdf 302.95 Kb 00:01:24 00:00:43 00:00:37 00:00:18 00:00:01
  05chapter8.pdf 498.19 Kb 00:02:18 00:01:11 00:01:02 00:00:31 00:00:02
  06back.pdf 292.13 Kb 00:01:21 00:00:41 00:00:36 00:00:18 00:00:01

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact UPeTD.