Title page for ETD etd-11112005-154531


Document Type Master's Dissertation
Author Swanepoel, Stefanus Arnoldus
URN etd-11112005-154531
Document Title A time spread diversity technique with integrated coding and interference cancellation
Degree MEng (Electronic Engineering)
Department Electrical, Electronic and Computer Engineering
Supervisor
Advisor Name Title
Prof L P Linde Committee Chair
Keywords
  • digital communication systems improvement
Date 2002-04-01
Availability unrestricted
Abstract
Conventional signal diversity techniques increase system complexity and/or result in an increase in the required signal bandwidth. A novel Time Spread (TS) diversity technique has been proposed in [1] aimed at improving the performance of digital communication systems in flat-fading channels without increasing their complexity or bandwidth usage. With TS, time diversity is obtained by transmitting a modulated spreading sequence, spanning over a temporal period longer than the channel coherence time Tc, for each information symbol. Unfortunately, this TS technique exhibits a Bit Error Rate (BER) performance floor at higher SNR values that renders the original technique less attractive.

This dissertation is primarily concerned with the nullification of this BER performance floor. Sec¬ondly, the ability of the TS technique to transform a flat-fading channel into an Additive White Gaus¬sian Noise (AWGN) channel is investigated and exploited to enhance the performance of coding techniques designed for AWGN channels, when used in flat-fading channels.

A new method is described by which TS sequences can be temporally expanded, thereby increas¬ing their obtainable time diversity gains. This method also reduces the computational complexity of a TS system, while retaining the signal diversity properties of a longer non-expanded sequence.

The BER floor in TS systems is caused by the distortion of the Aperiodic Auto-Correlation (AAC) properties of overlapping spreading sequences in fading channels, resulting in Inter Code(Sequence) Interference (ICI) between spreading sequences. A Pilot Symbol Aided Modulation (PSAM) tech¬nique is adapted for the TS system to provide accurate channel estimates required by the Inter Code(Sequence) Interference Cancellation (lCIC) module. A hybrid ICIC technique, which corrects the fading TS symbol amplitudes during periods of above average instantaneous SNR levels, is shown to be the most effective. This ICIC technique enables the TS technique to provide gains similar to that of conventional third order diversity techniques at average Eb/ No ratios above 10 dB.

Finally, the transparency and ability of the TS technique to transform fading channels into Gaus¬sian channels are exploited to allow the integration of conventional convolutional codes with the TS system. The coded TS system achieves substantial gains when operating in a Rayleigh flat-fading channel when a soft decision Viterbi decoder is used in the TS receiver. A strategy by which Turbo Code (TC) techniques can be integrated with the TS technique is discussed as a concluding notion to illustrate the flexibility of the TS technique.

Future research areas are identified based on the findings of this dissertation. These include the investigation of more effective adaptive ICIC schemes and the possibility of using Code Division Multiple Access (CDMA) communication techniques over a narrow band channel by employing TS- and Multi-User (MU)-detection methods, combined with existing ICIC techniques. The cryptographic value of the TS technique also provides ground for future research.

© 1999, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.

Please cite as follows:

Swanepoel, SA 1999, A time spread diversity technique with integrated coding and interference cancellation, MEng dissertation, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-11112005-154531/ >

H548/ag

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  dissertation.pdf 1.95 Mb 00:09:00 00:04:38 00:04:03 00:02:01 00:00:10

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact UPeTD.