Title page for ETD etd-11092004-091241

Document Type Master's Dissertation
Author Nortje, W D
Email upetd@up.ac.za
URN etd-11092004-091241
Document Title Comparison of Bayesian learning and conjugate gradient descent training of neural networks
Degree MEng (Electronics)
Department Electrical, Electronic and Computer Engineering
Advisor Name Title
  • neural networks
  • Bayesian neural networks
  • sampled optimisation
  • Bayesian learning
Date 2001-10-28
Availability unrestricted
Neural networks are used in various fields to make predictions about the future value of a time series, or about the class membership of a given object. For the network to be effective, it needs to be trained on a set of training data combined with the expected results. Two aspects to keep in mind when considering a neural network as a solution, are the required training time and the prediction accuracy.

This research compares the classification accuracy of conjugate gradient descent neural networks and Bayesian learning neural networks. Conjugate gradient descent networks are known for their short training times, but are not very consistent and results are heavily dependant on initial training conditions. Bayesian networks are slower, but much more consistent.

The two types of neural networks are compared, and some attempts are made to combine their strong points in order to achieve shorter training times while maintaining a high classification accuracy.

Bayesian learning outperforms the gradient descent methods by almost 1%, while the hybrid method achieves results between those of Bayesian learning and gradient descent. The drawback of the hybrid method is that there is no speed improvement above that of Bayesian learning.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  00dissertation.pdf 981.04 Kb 00:04:32 00:02:20 00:02:02 00:01:01 00:00:05

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact UPeTD.