Title page for ETD etd-10062010-182746

Document Type Doctoral Thesis
Author Olivier, Andrew John
URN etd-10062010-182746
Document Title Modification of rhenium carbonyls with thienyl nucleophiles
Degree PhD
Department Chemistry
Advisor Name Title
Prof S Lotz Supervisor
  • rhenium carbonyls
  • dirhenium acylate
Date 2010-04-16
Availability unrestricted
In the reaction between [Re(CO)5Br] and 2–lithiumthienyl, X–ligand substitution was expected. Li+{C4H3S}¯did not substitute Br¯, but an intermediate negatively charged complex was obtained (non–mobile on silica gel) and it was found that the thienyl had bonded to a carbonyl ligand, producing a dirhenium acylate complex. Such complexes are the precursors to neutral Fischer carbene complexes. After alkylation with Et3OBF4, [Re2 (CO) 9C(OEt)C4H3S] (1) was obtained, instead of a monorhenium monocarbene complex.

Greater yields of 1 could be obtained, from reactions with [Re2(CO) 10] instead of [Re(CO) 5Br]. [Re2 (CO) 10] reacted with 5–lithium–2,2'–bithienyl and 2–lithium–3,6– dimethylthieno[3,2–b]thienyl and was then alkylated with Et3OBF4. The reactions proceeded smoothly and [Re2 (CO) 9C(OEt)C8H5S2] (2) and [Re2 (CO) 9C(OEt)C8H7S2] (3) were obtained.

The substrates thiophene, 2,2'–bithiophene and 3,6–dimethylthieno[3,2–b]thiophene, can all be doubly lithiated under appropriate reaction conditions. These lithiated species were reacted with two equivalents of [Re2 (CO) 10]. In the case of bithiophene this produced, in good yield, the tetrametal biscarbene complex [Re2 (CO) 9C(OEt)C8H4S2C(OEt)Re2 (CO) 9] (8). In the thiophene and dimethylthieno[3,2–b]thiophene cases [Re2 (CO) 9C(OEt)C4H2SC(OEt)Re2 (CO) 9] (7) and [Re2 (CO) 9C(OEt)C8H6S2C(OEt)Re2 (CO) 9] (9) could be isolated in meagre quantities. This was ascribed to poor double lithiation (also steric hindrance in the case of 7).

The carbene ligands reacted with water on the silica gel during column chromatography or in a control experiment with degassed water to produce aldehydes by reductive elimination from the metal. Protonation of the acylrhenate afforded rhenium hydrides which is also a potential precursor to aldehyde formation. This is believed to be a facile process for especially complex 9, isolated in very small quantity.

Complexes 7–9 produced monocarbene aldehyde complexes [Re2(CO) 9C(OEt)C4H2SC(O)H] (12), [Re2 (CO) 9C(OEt)C8H4S2C(O)H] (13) and [Re2 (CO) 9C(OEt)C8H6S2C(O)H] (14), as well as dialdehyde compounds. Complexes 2 and 3 also produced aldehyde compounds. The formation of aldehydes from ethoxycarbene complexes is believed to involve hydroxycarbene intermediate species. Experiments were performed on [Re2 (CO) 10] and [Re(CO) 5Br]. They were reacted with 2–lithiumthienyl and then protonated. In the case of [Re2(CO) 10], hydride signals were observed on the 1H NMR spectrum, as well as aldehyde signals. In the case of [Re(CO) 5Br] there was strong NMR evidence indicating the formation of a hydroxycarbene complex.

Complexes 1, 2, and 3 were reacted with Br2 (l). The metal–metal bonds were cleaved by the bromine to produce monorhenium carbene complexes [Re(CO) 4{C(OEt)C4H3S}Br] (4), [Re(CO) 4{C(OEt)C8H5S2}Br] (5), and [Re(CO) 4{C(OEt)C8H7S2}Br] 6) and [Re(CO) 5Br]. Complex 8 reacted with bromine to produce a monocleaved complex [Re2 (CO) 9C(OEt)C8H4S2C(OEt)Re(CO) 4Br] (11) and a biscleaved complex [Re(CO) 4Br{C(OEt)C8H4S2C(OEt)}Re2 (CO) 4Br] (10).

Unique complexes [Re(CO) 4{C(OH)C4H3S}{μ–H}Re(CO) 4{C(O)C4H3S}] (15) and [Re(CO) 4{C(OH)C8H5S2}{μ–H}Re(CO) 4{C(O) C8H5S2}] (16) were obtained by starting with [Re(CO) 5Br] or [Re2 (CO) 10] and reacting them with 2–lithiumthienyl and 5–lithium–2,2'– bithienyl. These complexes were isolated from the column as very polar compounds after eluation of the aldehyde complexes. The dirhenium complex was obtained with a carbonyl– modified ligand (hydroxycarbene/acyl) on each of the metals. The complexes consist of two fragments held together by a hydrogen atom that bridges the two rhenium atoms (hydrido) and one that bridges the oxygen atoms of the carbene/acyl ligands (protonic).

© 2009 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.

Please cite as follows:

Olivier, AJ 2009, Modification of Rhenium carbonyls with thienyl nucleophiles , PhD thesis, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-10062010-182746/ >


  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  00front.pdf 270.38 Kb 00:01:15 00:00:38 00:00:33 00:00:16 00:00:01
  01chapter1.pdf 432.61 Kb 00:02:00 00:01:01 00:00:54 00:00:27 00:00:02
  02chapter2.pdf 386.85 Kb 00:01:47 00:00:55 00:00:48 00:00:24 00:00:02
  03chapter3.pdf 728.52 Kb 00:03:22 00:01:44 00:01:31 00:00:45 00:00:03
  04chapter4.pdf 1.62 Mb 00:07:29 00:03:51 00:03:22 00:01:41 00:00:08
  05chapter5.pdf 273.13 Kb 00:01:15 00:00:39 00:00:34 00:00:17 00:00:01
  06chapter6.pdf 195.01 Kb 00:00:54 00:00:27 00:00:24 00:00:12 00:00:01
  07appendix.pdf 115.16 Kb 00:00:31 00:00:16 00:00:14 00:00:07 < 00:00:01

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact UPeTD.