Title page for ETD etd-01312006-141711

Document Type Master's Dissertation
Author Ngwangwa, Harry Magadhlela
Email hngwangwa@poly.ac.mw
URN etd-01312006-141711
Document Title Assessment of structural damage using operational time responses
Degree MSc (Mechanics)
Department Mechanical and Aeronautical Engineering
Advisor Name Title
Mr F van Tonder
Prof P S Heyns
  • damage quantification
  • structural damage identification
  • test statistic
  • operational response monitoring
  • crack propagation
  • remaining service life
  • continuous structural health monitoring
  • vibration-based technique
  • crack ratio
  • internal data variability
Date 2005-09-09
Availability unrestricted
The problem of vibration induced structural faults has been a real one in engineering over the years. If left unchecked it has led to the unexpected failures of so many structures. Needless to say, this has caused both economic and human life losses.

Therefore for over forty years, structural damage identification has been one of the important research areas for engineers. There has been a thrust to develop global structural damage identification techniques to complement and/or supplement the long-practised local experimental techniques. In that respect, studies have shown that vibration-based techniques prove to be more potent.

Most of the existing vibration-based techniques monitor changes in modal properties like natural frequencies, damping factors and mode shapes of the structural system to infer the presence of structural damage. Literature also reports other techniques which monitor changes in other vibration quantities like the frequency response functions, transmissibility functions and time-domain responses. However, none of these techniques provide a complete identification of structural damage.

This study presents a damage detection technique based on operational response monitoring, which can identify all the four levels of structural damage and be implemented as a continuous structural health monitoring technique. The technique is based on monitoring changes in internal data variability measured by a test statistic c2Ovalue. Structural normality is assumed when the c2Om value calculated from a fresh set of measured data is within the limits prescribed by a threshold c2OTH value . On the other hand, abnormality is assumed when this threshold value has been exceeded. The quantity of damage is determined by matching the c2Om value with the c2Op values predicted using a benchmark finite element model.

The use of c2O values is noted to provide better sensitivity to structural damage than the natural frequency shift technique. The analysis carried out on a numerical study showed that the sensitivity of the proposed technique ranged from three to thousand times as much as the sensitivity of the natural frequencies. The results from a laboratory structure showed that accurate estimates of damage quantity and remaining service life could be achieved for crack lengths of less than 0.55 the structural thickness. This was due to the fact that linear elastic fracture mechanics theory was applicable up to this value.

Therefore, the study achieved its main objective of identifying all four levels of structural damage using operational response changes.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  00dissertation.pdf 3.91 Mb 00:18:06 00:09:18 00:08:09 00:04:04 00:00:20

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact UPeTD.