Title page for ETD etd-01122007-110812


Document Type Master's Dissertation
Author Fourie, Steven
URN etd-01122007-110812
Document Title Advanced process monitoring using wavelets and non-linear principal component analysis
Degree M Eng (Control Engineering)
Department Chemical Engineering
Supervisor
Advisor Name Title
Prof P L de Vaal Committee Chair
Keywords
  • process monitoring
  • non-linear principal component analysis
  • fault detection
Date 2000-04-01
Availability unrestricted
Abstract
The aim of this study was to propose a nonlinear multiscale principal component analysis (NLMSPCA) methodology for process monitoring and fault detection based upon multilevel wavelet decomposition and nonlinear principal component analysis via an input-training neural network.

Prior to assessing the capabilities of the monitoring scheme on a nonlinear industrial process, the data is first pre-processed to remove heavy noise and significant spikes through wavelet thresholding. The thresholded wavelet coefficients are used to reconstruct the thresholded details and approximations. The significant details and approximations are used as the inputs for the linear and nonlinear PCA algorithms in order to construct detail and approximation conformance models. At the same time non-thresholded details and approximations are reconstructed and combined which are used in a similar way as that of the thresholded details and approximations to construct a combined conformance model to take account of noise and outliers. Performance monitoring charts with non-parametric control limits are then applied to identify the occurrence of non-conforming operation prior to interrogating differential contribution plots to help identify the potential source of the fault.

A novel summary display is used to present the information contained in bivariate graphs in order to facilitate global visualization. Positive results were achieved.

2000, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.

Please cite as follows:

Fourie, S 2000, Advance process monitoring using wavelets and non-linear principal component analysis, MEng dissertation, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-01122007-110812/ >

H643/ag

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  00front.pdf 198.84 Kb 00:00:55 00:00:28 00:00:24 00:00:12 00:00:01
  01chapters1-6.pdf 3.06 Mb 00:14:09 00:07:16 00:06:22 00:03:11 00:00:16
  02chapters7-11.pdf 3.08 Mb 00:14:16 00:07:20 00:06:25 00:03:12 00:00:16
  03back.pdf 475.38 Kb 00:02:12 00:01:07 00:00:59 00:00:29 00:00:02

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact UPeTD.